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Abstract: A method for the combinatorial synthesis of 2,9-substituted purines using a 
Mitsunobu reaction to alkylate the N-9 position and an arnination reaction to install amines 
at the C-2 position has been developed. © 1997, Elsevier Science Ltd. All rights reserved. 

The purine ring is a common structural element of a large number of agonists, antagonists, substrates 
and effectors that play key roles in many cellular processes. It is therefore reasonable to expect that 
combinatorial libraries of purine derivatives may provide inhibitors of these processes that are useful biological 
probes or lead molecules for drug development efforts. An example of one such inhibitor is olomoucine 
(Scheme Ia) which exhibits moderate inhibitory activity (IC-50 = 7 gM) but good selectivity for the CDK/cyclin 
protein kinases 1. A 2.4/~ crystal structure of olomoucine bound to CDK22 reveals that the purine portion of 
olomoucine binds in the conserved ATP binding pocket, while the benzylamino group extends into a region of 
the active site unique to the CDK2 kinases. Our goal has been to use combinatorial chemisty to increase the 
affinity and specificity of olomoucine through the introduction of diversity at the 2, 6, and 9-positions of the 
purine ring. We have previously reported the combinatorial synthesis of substituted 2-aeylamino-6-amino- and 
2,6-diaminopurines 3. This paper describes a method for the synthesis of combinator!l,t libraries of 9-alkyl-2- 
amino purines for screening against CDK2, as well as other cellular kinases, G-proteins and polymerases. 

Previous work has established that the 6-benzylamino group contributes significantly to the specificity 
and binding affinity of olomoucine. We therefore decided to incorporate the benzylamino substituent into a 2- 
fluoro-6-(4-aminobenzylamino)purine(4) core. Synthesis of 4 is accomplished by converting commercially 
available 2-amino-6-choloropurine(1) to 2 by diazotization in aqueous fluoroboric acid with sodium nitrite 
followed by monoamination at the 6-position with 4-nitrobenzylamine and hydrogenation(Scheme Ib) 4. 
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Solid phase synthesis begins with the coupling of 5-(4-formyl-3,5-dimethoxyphenyloxy)valeric 
acid(PAL) 5 to amine derivatized crowns 6 using diisopropylcarbodiimide-hydroxybcnzotriazole in DMF. The 
purine core 4 is coupled by reductive amination using sodium triacetoxyborohydride in DMF containing 1% 
acetic acid (Scheme II). The first combinatorial step consists of alkylation of the N-9 position with a variety of 
alcohols using Mitsunobu conditions 7 to yield 8. The alkylation reaction is monitored by cleavage of the 
product from support followed by analytical reverse-phase HPLC 8 and characterization by FAB-MS(Table I) 9. 

Primary and secondary aliphatic alcohols alkylate exclusively at the N-9 position while benzylic alcohols 
result in partial alkylation of the N-6 position. Good conversion to product is observed (HPLC yield: 73-88%) 
with a variety of alcohols including sterically hindered secondary alcohols such as 3-hydroxytetrahydrofuran. 
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Because mild reaction conditions are employed, alcohols containing base sensitive functional groups can be 
incorporated. Additionally, the large number of commerically available alcohols offers considerable diversity in 
the library at the N-9 position. 

S c h e m e  II .  
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Table I. Products of N-9 alkylation reaction. 

Alcohol ( 1 R) 

Ethanol 
N,N-Dimcthylethanolamine 
Isopropanol 
Benzyi alcohol 

Yield (%) 
Starting 
Material 

3-H~idroxytetrahydrofuran 
4-(2-Hydroxyethyl)morpholine 

11 
15 

14 

Yield (%) 
Product 

88 
84 
87 

30(35*) 

Yield (%) Other 

2 
21 

2-(3-Thienyl)ethanol 17 83 0 
18 74 8 
11 1 88 

25(50*) 24 (+/-)- 1 -Phenyl- 1 -propanol 
2-(2-Thienyl) -.k--~l 

*Yield of 6,9-dialkylated purine 

The second combinatorial step involves substitution of the fluorine at the C-2 position of the purine ring 
with amines to yield 9. The final product 10 is cleaved from the solid support and analyzed by reverse-phase 
HPLC 8 and FAB-MS(Table 11) 9. Solution phase chemisty has demonstrated that a fluoro group is more readily 
displaced than the corresponding chloride or bromide. 

Table II. Products of C-2 substitution reaction. 

Amine Name (2R) 

Alcohol (IR) 
2-(3-thienyl) 

ethanol 

% 10 
83 

Alcohol (I R) 
3-hydroxy- 

tetrahydro-furan 

% 10 
85 Butylamine 

2-Aminoethanol 76 80 82 
55 75 72 1,3-Diaminopropane 

4-Methoxybenzylamine 
2-Fluorobenzylamine 
2-(2-Aminoethyl)pyridine 
S-(-)-2-Amino-3-phenyl-l-propanol 
Cyclohexylamine 

77 
73 
76 
55 
60 
ND 
ND 

2-(Methylamino)ethanol 
(+/-)-2-Amino-3-methyl- l-butanol 

Alcohol (1R) 
4-(2-hydroxy- 

ethyl)- 
morpholine 

% 10 
69 

57 56 
75 80 
54 51 

76 78 
66 76 
77 83 
60 61 



1163 

HPLC yields of the desired products are good (51-85%, average 70%) with minor biproducts consisting 
primarily of starting material from either the alkylation or amination reactions. The amination chemistry is 
particularly versatile because primary and secondary amines bearing a wide range of unprotected functional 
groups are acceptable building blocks. Due to the small quantity of compound (1.6 ~tmol) released from a 
crown, two purines were synthesized on larger scale for characterization purposes on PAL derivatized MBHA 
resin (0.87 mmol/g) by Scheme II. 

11, 74% 

HO~/'~ N tL~ N~"~  NH2 
. L. 

12, 87 % 
After cleavage from resin using the TFA cocktail, both compounds were purified by preparative TLC and 
characterized by reverse phase HPLC, IH NMR, and high-resolution mass spectrometry 10. Synthesis and 
biological evaluation of larger libraries (500-1000 compounds) of purine derivatives using Scheme II is currently 
in progress. We are also investigating the possibility of directly linking the purine core to solid support via an 
amino or oxygen substitutent at the 6-position thereby allowing the combinatorial synthesis of adenine or 
guanine derivatives. 
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(m, 1H), 4.54-4.59 (m, 3H), 6.60 (d, 2H, 8.3 Hz), 7.09 (d, 2H, 8.3 Hz), 7.65 (s, 1H); mass 
spectrum (FAB +) m/e 484 (MH)+; HRMS Calcd for (C22H29N902S)H+: 484.224318, Found: 
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2-(2-Hydroxyethyl)-6-(4-aminobenzylamino)-9-ethyipurine (12). 1H NMR (400 MHz, 
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(C 16H21N70) H+: 328.1886, Found: 328,1882. 
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